...
DHIS2 | FHIR | DHIS2 vs FHIR % | ||
---|---|---|---|---|
Average | 1.41642669 | 0.578393578819 | 5859.83584293 |
Test detailed results
logged on Nov 29/ 2022 UTC-7 0809:5216:00
Performance Testing for | Attempt | DHIS2 API | DHIS2 Size | FHIR API | FHIR Size | Improvement % |
---|---|---|---|---|---|---|
El Salvador | Attempt 1 | 1. |
37355 | 141 | 0. |
598687 | 500 | 56. |
4133 | ||
Attempt 2 | 1. |
3631 | 141 | 0. |
569395 | 500 |
58. |
228 | ||
Attempt 3 | 1. |
46057 | 141 | 0. |
595058 | 500 | 59. |
2586 | ||
Kenya | Attempt 1 | 1. |
43973 | 500 | 0. |
593388 | 500 |
58. |
7847 | ||
Attempt 2 | 1. |
43513 | 500 | 0. |
582957 | 500 | 59. |
3796 | ||
Attempt 3 | 1. |
48656 | 500 | 0. |
557877 | 500 |
62. |
4718 | ||
Nigeria | Attempt 1 | 1. |
50456 | 500 | 0. |
583583 | 500 |
61. |
2125 | ||
Attempt 2 | 1. |
50682 | 500 | 0. |
566507 | 500 |
62. |
4039 | ||
Attempt 3 | 1. |
47951 | 500 | 0. |
572773 | 500 |
61. |
2864 | ||
Cameroon | Attempt 1 | 1. |
49727 | 500 | 0. |
579295 | 500 |
61. |
31 | ||
Attempt 2 | 1. |
57967 | 500 | 0. |
584989 | 500 |
62. |
9676 | ||
Attempt 3 | 1. |
47999 | 500 | 0. |
569686 | 500 |
61. |
5074 | ||
Nepal | Attempt 1 | 1. |
57151 | 12 | 0. |
587268 | 500 |
62. |
6305 | ||
Attempt 2 | 1. |
11562 | 12 | 0. |
565472 | 500 |
49. |
3134 | ||
Attempt 3 | 1. |
10675 | 12 | 0. |
575349 | 500 |
48. |
0143 | ||
Overall Average | 1. |
42669 | 0. |
578819 |
59. |
4293 |
Testing Script
Code Block | ||||
---|---|---|---|---|
| ||||
case_results = [{"description": "Performance Testing for", "attempt": "Attempt", "dhis2": "DHIS2 API", "dhis2_size": "DHIS2 Size", "fhir": "FHIR API", "fhir_size": "FHIR Size", "improvement": "Improvement %"}] print("Case #2 - Getting 500 orgUnits/Location 100km around the provided coordinates") improvements = [] dhis2_performances = [] fhir_performances = [] for country in countries: for i in range(1,4): case_result = {} if i == 1: case_result['description'] = "{}".format(country['name']) case_result['attempt'] = "Attempt {}".format(i) dhis2_url = dhis2_base_url+'n=500&c={},{}&d=1000000'.format(country['latitude'], country['longitude']) result = requests.get(dhis2_url, auth=dhis2_auth) if result.status_code == 200: data = result.json() dhis2_performances.append(result.elapsed.total_seconds()) case_result['dhis2'] = dhis2_performances[-1] case_result['dhis2_size'] = len(data['outlet']) request_url = fhir_location_url+'near={}|{}|10000|km&_count=500'.format(country['latitude'], country['longitude']) fhirResult = requests.get(request_url, auth=fhir_auth) if fhirResult.status_code == 200: fhir_data = fhirResult.json() fhir_performances.append(fhirResult.elapsed.total_seconds()) case_result['fhir'] = fhir_performances[-1] case_result['fhir_size'] = len(fhir_data['entry']) if 'entry' in fhir_data else 0 improvements.append(((case_result['dhis2'] - case_result['fhir'])/case_result['dhis2'])*100) case_result['improvement'] = improvements[-1] case_results.append(case_result) time.sleep(0.01) case_result = {} case_result['description'] = "Overall Average" case_result['dhis2'] = np.average(dhis2_performances) case_result['fhir'] = np.average(fhir_performances) case_result['improvement'] = np.average(improvements)((case_result['dhis2'] - case_result['fhir'])/case_result['dhis2'])*100 case_results.append(case_result) print(tabulate(case_results, headers='firstrow', tablefmt='pipe')) |
...